A GPU Memory System Comparison for an Elliptic Test Problem
نویسندگان
چکیده
This paper presents GPU-based solutions to the Poisson equation with homogeneous Dirichlet boundary conditions in two spatial dimensions. This problem has well-understood behavior, but similar computation to many more complex real-world problems. We analyze the GPU performance using three types of memory access in the CUDA memory model (direct access to global memory, texture access, and shared memory). Based on data locality, different CUDA algorithms are designed to accommodate the different device memory performance behaviors. We present a performance study on the speedup of our GPU-based solutions on an NVIDIA Tesla C2070 over serial code. By relating the data access pattern and its spatial locality, our results show that an algorithm using global memory with coalesced reads outperforms the other memory systems and allows effective solvers using single precision floating points.
منابع مشابه
The new protocol blind digital signature based on the discrete logarithm problem on elliptic curve
In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...
متن کاملMatrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs
Many problems in geophysical and atmospheric modelling require the fast solution of elliptic partial differential equations (PDEs) in “flat” three dimensional geometries. In particular, an anisotropic elliptic PDE for the pressure correction has to be solved at every time step in the dynamical core of many numerical weather prediction (NWP) models, and equations of a very similar structure aris...
متن کاملAn efficient blind signature scheme based on the elliptic curve discrete logarithm problem
Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...
متن کاملECDLP on GPU
Elliptic curve discrete logarithm problem (ECDLP) is one of the most important hard problems that modern cryptography, especially public key cryptography, relies on. And many efforts are dedicate to solve this problem. In recent days, GPU technology develops very fast and GPU has become a powerful tool for massive computation. In this paper, we give an implementation of parallel Pollard ρ metho...
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کامل